Effect of a training intervention on the integration of Computational Thinking in Primary Education Teachers
Effect of a training intervention on the integration of Computational Thinking in Primary Education Teachers
DOI:
https://doi.org/10.5281/zenodo.17471877Keywords:
Intervention Programs, Elementary School Teachers, Computational Thinking, Visual Block ProgrammingAbstract
Computational thinking (CT) is a key competence in the 21st century. Its teaching in Primary Education combines unplugged and plugged-in strategies. The present study evaluates the effect of a training intervention aimed at primary school teachers to develop CT and implement visual block programming (VBP). A quasi-experimental pre-post design was used to assess the effects of the intervention. The final sample consisted of 57 teachers in Spain. The AProPrim scale was used for the measurement, consisting of three dimensions (self-efficacy, relevance and interest), whose structure was confirmed by confirmatory factor analysis. Data analysis was performed with IBM SPSS, applying descriptive statistics, Student's t-tests, Wilcoxon for non-parametric data and Pearson's correlations. The results showed a significant increase in self-efficacy and perceived knowledge and use of VBP, although a decrease in interest was observed. Positive correlations were found between self-efficacy, relevance and use, which were strengthened after the intervention. In addition, the overall assessment of the training was positive, highlighting its applicability and the demand for more sessions. The implications of this study highlight the importance of providing specific teacher training in CT and VBP to improve self-efficacy and the application of these competencies in the classroom, primarily through practical approaches and appropriate resources. It is recommended that training strategies be adjusted according to teacher experience, considering generational differences.
References
Angeli, C., & Valanides, N. (2020). Developing young children’s computational thinking with educational robotics: An interaction effect between gender and scaffolding strategy. Computers in Human Behavior, 105, 105954. https://doi.org/10.1016/j.chb.2019.03.018
Authors. (2024).
Authors. (2026).
Avcı, C., & Deniz, M. N. (2022). Computational thinking: early childhood teachers’ and prospective teachers’ preconceptions and self-efficacy. Education and Information Technologies, 27(8), 11689–11713. https://doi.org/10.1007/s10639-022-11078-5
Bakala, E., Gerosa, A., Hourcade, J. P., & Tejera, G. (2021). Preschool children, robots, and computational thinking: A systematic review. International Journal of Child-Computer Interaction, 29, 100337. https://doi.org/10.1016/j.ijcci.2021.100337
Basu, S., Rutstein, D. W., Xu, Y., Wang, H., & Shear, L. (2021). A principled approach to designing computational thinking concepts and practices assessments for upper elementary grades. Computer Science Education, 31(2), 169–198. https://doi.org/10.1080/08993408.2020.1866939
Berciano-Alcaraz, A., Salgado-Somoza, M., & Jiménez-Gestal, C. (2022). Alfabetización computacional en educación infantil: Dificultades y beneficios en el aula de 3 años. Revista Electrónica Educare, 26(2), 1–21. https://doi.org/10.15359/ree.26-2.15
Bocconi, S., Chioccariello, A., Kampylis, P., Dagiené, V., Wastiau, P., Engelhardt, K., Earp, J., Horvath, M., Jasuté, E., Malagoli, C., Masiulionyté-Dangiené, V., & Stupuriené, G. (2022). Reviewing Computational Thinking in Compulsory Education. Publications Office of the European Union. https://doi.org/10.2760/126955
Boletín Oficial del Estado [BOE]. (2020). Ley Orgánica 3/2020, de 29 de diciembre, por la que se modifica la Ley Orgánica 2/2006, de 3 de mayo, de Educación. Boletín Oficial del Estado, 340, de 30 de diciembre de 2020. https://bit.ly/46iano7
Brackmann, C. P., Román-González, M., Robles, G., Moreno-León, J., Casali, A., & Barone, D. (2017). Development of Computational Thinking Skills through Unplugged Activities in Primary School. Proceedings of the 12th workshop on primary and secondary computing education, WiPSCE '17, 65–72. https://doi.org/10.1145/3137065.3137069
Cheng, Y.-P., Lai, C.-F., Chen, Y.-T., Wang, W.-S., Huang, Y.-M., & Wu, T.-T. (2023). Enhancing student’s computational thinking skills with student-generated questions strategy in a game-based learning platform. Computers & Education, 200, 104794. https://doi.org/10.1016/j.compedu.2023.104794
Cho, G., Hwang, H., Sarstedt, M., & Ringle, C. M. (2020). Cutoff criteria for overall model fit indexes in generalized structured component analysis. Journal of Marketing Analytics, 8(4), 189–202. https://doi.org/10.1057/s41270-020-00089-1
Çimşir, S., Kalelıoğlu, F., & Gülbahar, Y. (2024). Perceptions of primary school teachers on interdisciplinary computational thinking skills training. Informatics in Education 23(3), 507–524. https://doi.org/10.15388/infedu.2024.16
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Lawrence Erlbaum Associates.
Collado-Sánchez, M., García-Peñalvo, F., y Llorente, A. (2021). Computational thinking competences training for primary education teachers. TEEM’21 Ninth International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM'21), 758–762. https://doi.org/10.1145/3486011.3486544
Del Olmo-Muñoz, J., Cózar-Gutiérrez, R., & González-Calero, J. A. (2020). Computational thinking through unplugged activities in early years of Primary Education. Computers & Education, 150, 103832. https://doi.org/10.1016/j.compedu.2020.103832
Demirkol, K., Kartal, B., & Taşdemir, A. (2022). The effect of teachers’ attitudes towards and self-efficacy beliefs regarding STEM education on students’ STEM career interests. Journal of Science Learning, 5(2), 204–216. https://doi.org/10.17509/jsl.v5i2.43991
Fagerlund, J., Leino, K., Kiuru, N., & Niilo-Rämä, M. (2022). Finnish teachers’ and students’ programming motivation and their role in teaching and learning computational thinking. Frontiers in Education, 7, 1–18. https://doi.org/10.3389/feduc.2022.948783
Ferrando, P. J., & Anguiano-Carrasco, C. (2010). El análisis factorial como técnica de investigación en psicología. Papeles del Psicólogo, 3(1), 18–23. https://www.redalyc.org/articulo.oa?id=77812441003
Gamito, R., Aristizabal, P., Basasoro, M., & León, I. (2022). El desarrollo del pensamiento computacional en educación: valoración basada en una experiencia con Scratch. Innoeduca. International Journal of Technology and Educational Innovation, 8(1), 59–74. https://doi.org/10.24310/innoeduca.2022.v8i1.12093
García-Jiménez, E., Gil Flores, J., & Rodríguez-Gómez, G. (2000). Análisis Factorial. La Muralla, S.A.
Jiang, H., Islam, A. Y. M. A., Gu, X., & Guan, J. (2023). How do thinking styles and STEM attitudes have effects on computational thinking? A structural equation modeling analysis. Journal of Research in Science Teaching, 61(3), 645–673. https://doi.org/10.1002/tea.21899
Kallia, M., & Cutts, Q. (2022). Conceptual development in early-years computing education: a grounded cognition and action based conceptual framework. Computer Science Education, 33(4), 485–511. https://doi.org/10.1080/08993408.2022.2140527
Kotsopoulos, D., Floyd, L., Khan, S., Kizito N. I., Somanath, S., Weber J., & Yiu C. (2017). A pedagogical framework for computational thinking. Digital Experiences in Mathematics Education 3, 154–171. https://doi.org/10.1007/s40751-017-0031-2
Liu, J., Li, Q., Sun, X., Zhu, Z., & Xu, Y. (2021). Factors influencing programming self-efficacy: an empirical study in the context of Mainland China. Asia Pacific Journal of Education, 43(3), 835–849. https://doi.org/10.1080/02188791.2021.1985430
Marchesi, A. (2004). Qué será de nosotros los malos alumnos. Alianza Ensayo
Montero, I., y León, O. G. (2007). A guide for naming research studies in psychology. International Journal of Clinical and Health Psychology, 7 (3), 847-862.
Nordlöf, C., Höst, G. E., & Hallström, J. (2017). Swedish technology teachers’ attitudes to their subject and its teaching. Research in Science & Technological Education, 35(2), 195–214. https://doi.org/10.1080/02635143.2017.1295368
Ortuño M., G., & Serrano, J. L. (2024). Implementación y formación del profesorado de educación primaria en pensamiento computacional: una revisión sistemática. RIED-Revista Iberoamericana de Educación a Distancia, 27(1), 255–287. https://doi.org/10.5944/ried.27.1.37572
Papert, S. (1980). Mindstorms. Children, computers and powerful ideas. Basic books.
Pérez-Calderón, E., Prieto-Ballester, J., & Miguel-Barrado, V. (2021). Analysis of digital competence for Spanish teachers at pre-university educational key stages during COVID-19. International Journal of Environmental Research and Public Health, 18(15), 8093. https://doi.org/10.3390/ijerph18158093
Pérez-Garcias, A., Darder Mesquida, A., de-Benito Crosetti, B., & Negre-Bennasar, F. (2024). La competencia digital y la agencia digital docente en la formación inicial del profesorado. Bordón. Revista de Pedagogía, 76(2), 27–44. https://doi.org/10.13042/Bordon.2024.100546
Rich, P. J., Larsen, R. A., & Mason, S. L. (2020). Measuring teacher beliefs about coding and computational thinking. Journal of Research on Technology in Education, 53(3), 296–316. https://doi.org/10.1080/15391523.2020.1771232
Rodrigues, R. N., Costa, C., & Martins, F. (2024). Integration of computational thinking in initial teacher training for primary schools: a systematic review. Frontiers in Education, 9, 1330065. https://doi.org/10.3389/feduc.2024.1330065
Ronan, D., Erdil, D. C., & Brylow, D. (2023). Teacher attitudes & beliefs in computer science (T-ABC): Development & validation of a teacher survey instrument. ACM Transactions on Computing Education, 23(2), 1–23. https://doi.org/10.1145/3569945
Sun, L., & Liu, J. (2024). Different programming approaches on primary students’ computational thinking: A multifactorial chain mediation effect. Educational technology research and development, 72(2), 557–584. https://doi.org/10.1007/s11423-023-10312-2
Sun, L., & Zhou, D. (2023). K-12 teachers' programming attitudes among different disciplines: Analysis of influential factors. Journal of Computer Assisted Learning, 40(2), 375–930. https://doi.org/10.1111/jcal.12895
Tsortanidou, X., Daradoumis, T., & Barberá-Gregori, E. (2023). Unplugged computational thinking at K-6 education: evidence from a multiple-case study in Spain. Education 3-13, 51(6), 948–965. https://doi.org/10.1080/03004279.2022.2029924
Toh, L. P. E., Causo, A., Tzuo, P. W., Chen, I. M., & Yeo, S. H. (2016). A Review on the Use of Robots in Education and Young Children. Educational Technology & Society, 19 (2), 148–163. https://www.learntechlib.org/p/190767/
Villalustre, L., & Cueli, M. (2023). Assessing the computational thinking of pre-service teachers: A gender and robotics programming experience analysis. Education Sciences, 13, Article 1032. https://doi.org/10.3390/educsci13101032
Wijnen, F., Molen, J. W. v. d., & Voogt, J. (2022). Primary teachers’ attitudes towards using new technology and stimulating higher-order thinking in students: a profile analysis. Education and Information Technologies, 28(6), 6347–6372. https://doi.org/10.1007/s10639-022-11413-w
Wijnen, F., Walma Van Der Molen, J., & Voogt, J. (2024). Measuring primary school teachers’ attitudes towards new technology use: development and validation of the TANT questionnaire. SN Social Sciences, 4, Article 32. https://doi.org/10.1007/s43545-024-00836-6
Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33–35. https://doi.org/10.1145/1118178.1118215
Yadav, A., Mayfield, C., Zhou, N., Hambrusch, S., & Korb, J. T. (2014). Computational Thinking in Elementary and Secondary Teacher Education. ACM Transactions on Computing Education (TOCE), 14(1), 1–16. https://doi.org/10.1145/2576872
Zapata-Cáceres, M., Marcelino, P., El-Hamamsy, L., & Martín-Barroso, E. (2024). A Bebras Computational Thinking (ABC-Thinking) program for primary school: Evaluation using the competent computational thinking test. Education and Information Technologies, 29, 4969–14998. https://doi.org/10.1007/s10639-023-12441-w
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ana Gonzalez Cervera, Yolanda González-Arechavala, Olga Martín-Carrasquilla

This work is licensed under a Creative Commons Attribution 4.0 International License.
